S Center for Embedded Networked Sensing

Lewis Girod, Hanbiao Wang, Jeffrey Tseng, Martin Lukac, Naim Busek, Deborah Estrin, Richard Guy CENS System Lab – http://lecs.cs.ucla.edu

Introduction: Self-configuring platform for collaborative acoustic monitoring

Passive Acoustic Monitoring Applications

- Detect, classify, and localize targets using sound
- Free of interference to targets and environment
- Suitable for animal behavior monitoring

System architecture

- Network of acoustic arrays distributed in field
 - Four microphones in a square array
 - Stargate, platform, 2.6 Linux kernel
 - VXPocket 440 PCMCIA 4-channel sound card
 - Arrays are wirelessly connected via 802.11
 - Acoustic monitoring through collaborative processing
 - Animal vocalization is detected by nearby acoustic arrays
 - Sound is classified and DOA is estimated from phase comparison
 - Animal location is estimated through collaboration of multiple arrays

Problem Description: Challenges in collaborative acoustic monitoring

Collaborative monitoring system

Staged signal processing model

- · Early stages filter out periods where there are no events
- · Later stages detect, classify, and compute DOA
- · Collaborative phase: data association and localization

Precise synchronization between sampled channels

- Required for accurate direction of arrival (DOA)
- Need to overcome limitations of VXP hardware

- **Self-calibration** 3-D location and orientation of microphone arrays
 - · Required for 3-D target localization via bearing-crossing
 - · Difficult to obtain and maintain manually in field
 - · Can change if system is bumped or moved
- Acoustic localization system
 - · Based on time of flight (TOF) of acoustic signals
 - · Requires precise synchronization between nodes and from sample clock to node CPU clock

System Design: Acoustic ENSBox: a portable acoustic monitoring box

Prototype Platform design

Main Objectives

- Synchonized acoustic sampling
- 12-24 Hour lifetime on batteries
- Self-contained, water-resistant enclosure
- **Hardware Features**
 - Stargate CPU
 - 4 Channel VXP440 sampling card (16 bit/48K)
 - Internal LI+ battery pack
 - 802.11 card with external antenna
 - Audio mic preamps (TI OPA726) and speaker amplifier (COTS computer speaker)

RTI 1207A condenser mic capsule Acoustic performance

- Speaker/Mic/Sampling system response
- Preamp and microphone module are selected to have a very flat frequency response

FREQUENCY RESPONSE

 L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, D. Estrin, "EmStar a Software Environment for Developing and Deploying Wireless Sensor Networks", in Proceedings of USENIX 04.

[2] Lewis Girod, Martin Lukac, Andrew Parker, Thanos Stathopoulos, Jeffrey Tseng, Hanbiao Wang, Deborah Estrin, Richard Guy, Eddie Kohler, "A Reliable Multicast Mechanism for Sensor Network Applications", CENS Technical Report #48, April 25, 2005 2005.

[3] Lewis Girod, Vladimir Bychkovskiy, Jeremy Elson, and Deborah Estrin, "Locating tiny sensors in time and space: A case study", In Proceedings of the International Conference on Computer Design (ICCD 2002), Freiburg, Germany. September 16-18 2002. (Invited)

Preliminary Results

- Acoustic Ranging Component
 - In-lab tests with 4 nodes
 - In line of sight (LOS) conditions, achieves accuracy to a centimeter
 - Multipath and obstructions can introduce larger errors which can be persistent aspects of the environment [3].
- Still room to optimize detection algs **Localization Component**
- Simulation tests in MatLAB:

- System Components
- EmStar environment [1].
- Time synchonized sampling and sensor device infrastructure, supporting staged event driven processing [4].
- Network support for collaboration via multi-hop wireless network [2]

[4] Hanbiao Wang, Lewis Girod, Nithya Ramanathan, Deborah Estrin and Kung Yao, "A Platform for Collaborate Acoustic Signal Pro CENS Technical Report 00XX, November 28, 2004

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced