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Embedded networked sensing will reveal previously
unobservable phenomena

SPOT Vegetation
Daily Global Coverage
SWIR 3 Day Composite

Predicting Soil Erosion Potential:
Weekly MODIS Data

Red: Soil
Green: Vegetation
Blue: Snow

Sheely Farm 2002
Crop map

•  Remote sensing transformed observations of large scale phenomena

•  In situ sensing transforms observations of spatially variable processes in
heterogeneous and obstructed environments

San Joaquin River Basin
Courtesy of  Susan Ustin-Center for Spatial Technologies and Remote Sensing
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Environmental monitoring applications exhibit high
spatial variations and heterogeneity

Precision Agriculture,
Water quality management

Overflow of embankment

Algal growth as a result of
eutrophication

Severe seismic activity & structural response

• Embed numerous, low-cost,
distributed devices to monitor
and interact with physical world

• Deploy spatially and temporally
dense, in situ sensing and
actuation

• Network these devices so that
they can coordinate to perform
higher-level identification and
tasks

• Requires robust distributed
systems of thousands of devices.

Approach
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Environmental Application Drivers at CENS

• Contaminant Transport, Soils

• Marine microorganisms

• Biology/Ecosystem Processes

• Seismic behavior

Wastewater reuse in the Mojave Desert

• Where does the County
Sanitation District (CSD) of Los
Angeles put 4 million gallons
per day of treated wastewater
in a landlocked region?

Palmdale, CA
wastewater treatment
plant

Reclaimed wastewater
irrigation pivot plots

groundwater

top soil

sand
clay
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Plankton dynamics in marine environments

Spatial and
temporal
distributions of
harmful alga
blooms (red,
green, brown
tides) in
marine
coastal
ecosystems

Experimental Experimental andand
observational studies ofobservational studies of
chemicalchemical, , physical andphysical and
biolgical featuresbiolgical features
promoting bloom eventspromoting bloom events

Seismic behavior across southern Mexico

• Subduction zone structure
poorly understood, yet
responsible for severe
seismic activity in densely
populated Mexico City region

• Dense array of seismic
sensors across 500km line
needed to collect high-
fidelity data to infer fine-
grained plate structure

• Variety of inhospitable
terrain; urban/rural hurdles
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Technical challenges

• Physical environment is dynamic and unpredictable
• Small wireless nodes have stringent energy, storage,

communication constraints

• Large scale deployments call for in-network processing
and filtering of data close to sensor source

• Embedded nodes collaborate to report interesting spatio-
temporal events

WINS node
UCLA (1996)

Smart Dust 
UCB (2000)

The network is the sensor!

• Requires large distributed systems with adaptive internal
behavior that can report spatio-temporal events, and
characterize phenomena, not just return individual temporal
and spatial data points.

• Model based anomaly detection drives additional data/sample
collection, field observation

Model based
anomaly
detection
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• Embeddable, low-cost
sensor devices

• Robust, portable, self
configuring systems

• Data integrity, system
dependability

• Programmable,
adaptive systems

• Multiscale data fusion,
interactive access
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Objectives

• Energy

• Scale, dynamics

• Autonomous
disconnected
operation

• Sensing channel
uncertainty

• Complexity of
distributed systems

Constraints

Current technology research focus

Heterogeneity is key to deployed systems…
 and the field as a whole

• Several classes of systems:
– Mote herds: Scale
– Collaborative processing

arrays: Sampling rate
– Networked Info-Mechanical

Systems: Autonomy

• Achieve longevity/autonomy,
scalability, functionality with:
– heterogeneous systems
– in-network processing,

triggering, actuation

lifetime/autonomy

scale

Collaborative
processing arrays
(imaging, acoustics)

Infrastructure-
based mobility
(NIMS)

sampling
rate

Mote Clusters
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Event Detection

Localization &
Time Synchronization Self-Test

Programming Model

In Network Processing

Reusable, Modular, Flexible, Well-characterized Services/Tools :
• Routing and Reliable transport
• Time synchronization, Localization, Self-Test, Energy Harvesting
• In Network Processing: Triggering, Tasking, Fault detection, Sample

Collection
• Programming abstractions, tools
• Development, simulation, testing, debugging

Routing and Transport

Application-Driven (not Application-Specific)
Common System Software

Status: what’s in use

• Platforms:
– First generation embedded platforms
– Mica motes (8 bit, chipcon radio or

zigbee/18.15.4)
– Microservers/Masters (32 bit,

wifi/802.11, e.g. Intel Stargate)
• Networking:

– Self-organized tree routing
– Low power mac
– Timesync
– Reliability

• Tasking
– DB style queries
– Limited triggering, collaborative processing

• Energy:
– Energy aware operations
– App-specific energy harvesting
– Tiered systems

Microclimate Mapping
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A new S/W environment for 32-bit nodes

• Logistical and environmental issues in deployment
– Fielded systems tend to degrade more quickly than in the lab

• Environmental conditions: weather, animals, RF and sensor channel
– Uniform deployments are difficult to achieve: node replacement

• Observed Data can cause unexpected failures, new bugs in the
field
– e.g. Acoustic ranging system encountered new kinds of noise,

leading to new kinds of inconsistencies in geometry, crashing Non-
Linear Least-Squares (NLLS) algorithm – but not reproducible in
the lab

?

EmStar development environment

• EmStar is a layer above Linux designed to enable:
– Robustness: Keep system running despite unexpected failures and bugs
– Visibility: Easily debug/diagnose running systems
– Simulation, Emulation: Rapid iteration via real-code simulation tools
– Module Reuse: Leverage existing libraries, tools, and services
– EmTos: Wrapper library provides TinyOS API and Services

Emulation Array

Node
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Simulation Framework
with real RF channels Visualization Tools

Client Server

kfusd.o

/dev/fusd/dev/servicename

Kernel

User

Robust multi-process,
microkernel architecture
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EmTOS: Support for Heterogeneous Systems

• Wrapper Library
– Provides TinyOS API and

Services
– Enables NesC to provide new

EmStar services

• Compiles NesC Application +
EmTOS library into a single
EmStar module

• Benefits:
– Simulate systems of motes and

microservers in same “world”
– Easy “porting” of TinyOS/NesC

services to microservers
• ESS2
• TinyDB

LEDs EEPROM UART

Unmodified NesC Application

ADC

TimerC

SenseToRFM

AM

RadioCRCPacketClockC

Underlying EmStar Services

EmTOS Wrapper Library

EmStatusServer EmPacketServer TOS status

motesens
sensor/adc

motenic
link/mote0

Transciever (Mote)

tos/ leds tos/eeprom tos/tasksUser definedUser defined

hostmote
mote/0

Important developments using Emstar and TOS:
heterogeneous systems, mobility, sensor diversity, fusion

• Widely-distributed static nodes (smart dust)
• Limited energy and sampling rate
• Simultaneous, continuous in time, but

costs limit spatial density

• Microservers
• Provide computational, storage, and

communication resources
• Execute in-network processing, event

detection, system monitoring, tasking
and gathering

• Mobile and actuated nodes
• Articulation magnifies effective sensor

range
• Infrastructure-supported mobility

enables sensor diversity: location, type,
duration

• Enable adaptive, fidelity-driven, 3-D
sampling and sample collection Figure courtesy of Bill Kaiser
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ENS in a box: focus on usability, tools

• Center for Embedded Networked Sensing,
http://cens.ucla.edu

• TInyOS and Mote platforms: UC Berkeley,
Intel, Crossbow, Sensicast, Dust Networks,
Ember http://www.tinyos.net

• NSF Workshops including Sensors for
Environmental Observatories,
http://www.wtec.org/seo/seo6.htm

• National Ecological Observatory Network,
http://www.neoninc.org

• Principles of Embedded Networked Systems
Design, Gregory  J. Pottie and William J.
Kaiser, Cambridge University Press, Spring
2005
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